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Quasiperiodicity and Randomness in 
Tilings of the Plane 

C. Godr~che I and J. M. Luck 2'3'4 
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We define new tilings of the plane with Robinson triangles, by means of 
generalized inflation rules, and study their Fourier spectrum. Penrose's match- 
ing rules are not obeyed; hence the tilings exhibit new local environments, such 
as three different bond lengths, as well as new patterns at all length scales. 
Several kinds of such generalized tilings are considered. A large class of deter- 
ministic tilings, including chiral tilings, is strictly quasiperiodic, with a tenfold 
rotationally symmetric Fourier spectrum. Random tilings, either locally (with 
extensive entropy) or globally random (without extensive entropy), exhibit a 
mixed (discrete+continuous) diffraction spectrum, implying a partial perfect 
long-range order. 
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1. I N T R O D U C T I O N  

Studies of quasicrystalline structures have shown the importance of better 
understanding the concept of quasiperiodicity, in order to characterize the 
kind of order found in aperiodic matter (see, e.g., ref. 1). One may expect 
the existence of many types of order, between the perfect quasiperiodic 
tilings and the random ones, made of randomly packed units, with local 
pentagonal or icosahedral symmetry. Some recent work has been devoted 
to the role of defects in perfect quasiperiodic tilings. (2'3) More generally, it 
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is worthwhile investigating the extent to which quasiperiodicity is robust 
under changes of the tile ordering in a Penrose tiling. Other studies, 
concerned with random tilings, (4 lo) proposed models of structure or 
growth for quasicrystals. Some of those structures exhibit narrow peaks 
in their Fourier transform (diffraction spectrum), implying approximate 
quasicrystalline order. The aim of both methods is to describe real quasi- 
crystals, the structure of which probably lies between quasiperiodie (ideal) 
and random (amorphous). 

The viewpoint we adopt here is intermediate between the above 
approaches. The tilings we study are generated by inflation rules, which 
may themselves be random. More precisely, we consider filings made of 
Robinson triangles, which are particularly convenient when looking at 
inflation properties. We show that it is possible to tile the plane using self- 
similarity (inflation rules), without taking into account Penrose's matching 
rules. There are indeed several ways of cutting the Robinson triangles at 
each inflation step. We can consider three stages in a progressive dis- 
organization of the perfect Penrose tiling: (1)the inflation rules are not the 
usual ones, but they are chosen once forever; (2)the inflation rules are 
chosen randomly at each generation, but they are the same for all triangles 
at a given step (global randomness); (3)the inflation rules are chosen 
randomly at each generation and for each triangle (local randomness). We 
study the Fourier spectrum of the structures thus obtained. In the first case, 
the Fourier spectrum is purely discrete, i.e., made of delta (Bragg) peaks, 
while in cases 2 and 3 it also contains a continuous part. Hence this study 
contributes to a better understanding of the questions raised above. 

The present work may also be viewed as an extension of recent studies 
concerning one-dimensional models, m-15) In ref. 15, we investigated the 
consequences of the absence of an average lattice, due to an unbounded 
density fluctuation, on the Fourier spectrum of a one-dimensional struc- 
ture. We found a singular continuous spectrum, with nontrivial scaling 
behavior. This study mostly relied on the properties of an underlying sub- 
stitution (inflation rule), which permits us to write recursion relations for 
the Fourier amplitudes of successive generations of the structure. Therefore, 
extending these ideas to the two-dimensional case, we were naturally led to 
consider the inflation properties of Penrose tilings, which are most easily 
described in terms of Robinson triangles. ~16a7'18) 

The setup of this article is as follows. In Section 2, taking the simple 
one-dimensional example of the Fibonacci chain, we recall how the Fourier 
spectrum of strictly self-similar structures can be studied, using only their 
inflation rules. Section 3 is devoted to a review of the construction of the 
Penrose tiling in terms of Robinson triangles, with a detailed description of 
the geometry of the inflation rules, which are then used to derive in an 
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alternative way the quasiperiodicity and tenfold symmetry of the Fourier 
spectrum of Penrose tilings. In Section 4, we define a new class of 
deterministic tilings, namely chiral tilings, and show that these are also 
quasiperiodic. Section 5 deals with (locally) random objects, the random 
Fibonacci chain and the random Penrose tiling. These new structures have 
an extensive structural entropy; their Fourier spectrum has a mixed nature 
(discrete + continuous), indicative of a partially perfect long-range order. 
In Section 6, further generalizations are proposed, including globally 
random tilings, which have a mixed spectrum, but no extensive entropy. 
A short discussion ends this last section. 

2. A O N E - D I M E N S I O N A L  EXAMPLE:  THE F IBONACCI  C H A I N  

In this section, we illustrate by means of a simple example in one 
dimension the formalism that will be used later to study the Fourier trans- 
form of tilings of the plane. This approach, introduced by Bombieri and 
Taylor, ~19) has already been used by the authors in a previous work with 
Aubry/15) 

The Fibonacci sequence is generated by the following substitution T, 
acting on two symbols, or "letters," 0 and 1: 

T 10 

Starting from the initial "word" Wo = 0, we construct a sequence of words 
WL by repeated action of T: WL = T( WL_ ~), and hence 

W L = TL(0) (2.2) 

It can be easily shown that the form (2.1) of the substitution T yields the 
following concatenation rule: 

WL=WL IWL 2 (Wo=0;  W i = 1 )  (2.3) 

Hence the words WL converge to an infinite word W, called the Fibonacci 
sequence. From Eq. (2.3) it follows that WL contains FL+I letters, among 
which F L are 1, and FL_ j are 0. Here and throughout the following, F L 
denote the Fibonacci numbers, defined by the recursion 

FL=FL_~+FL_2 (r0 = 0; V , = l )  (2.4) 

These integers are related to the golden mean 

= 2 (2.5)  
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by the identities 

1 
F L = ~  [z L - ( - z - ' ) L ]  

r 1~ = F e z  + FI__, (2.6) 

( - - ~ - - I ) L = F L +  1 - -FLY 

The Fibonacci chain is built by putting atoms on a line, at abscissas 
u,, in such a way that the bond lengths 

In = un - u n _  1 (U 0 = 0 )  ( 2 . 7 )  

take two values, according to the Fibonacci sequence, namely l, = 1 (short 
bond) if the nth letter of W is 0, and l~ = 1 + r (long bond) if that nth letter 
is 1. Here, ~ is some additional parameter. The finite piece of the chain 
associated by such a construction to the word W/. has a length 

2L=FL+I +FLr (2.8) 

Hence the mean interatomic distance (inverse density) reads 

a =  lim /~L ____I+z--I~ (2.9) 
L ~  FL+ I 

It follows then from Eq. (2.6) that 

2L=FL+~a+  ( - - r - l )  L+~ ~ (2.10) 

Let now gL(q) denote the Fourier amplitude of the piece of the chain 
associated with WL: 

FL+I 
gL(q)= ~ e -iqu" (2.11) 

n - - 1  

The concatenation formula (2.3) then implies 

gL(q) = g L -  ~(q) + e--iq~L-lgL 2(q) (2.12) 

The initial conditions of this recursion relation read go(q)= e iq; gl(q)= 
e ~q(~+~). The local properties of the Fourier transform (diffraction 
spectrum) of the infinite structure are coded in the asymptotic growth 
of the amplitudes gL(q) for large L. (15'19) The largest possible growth is 
proportional to the sample size (number of atoms) 

gL(q) L ~  CFL+~ (2.13) 



Quasiperiodicity and Randomness 5 

The Fourier transform then has a delta peak at the value q of the wave- 
vector, and the complex number C is the amplitude of that delta peak. It 
can be shown from Eq. (2.12) that the behavior (2.13) with nonvanishing 
C occurs only if limL_~ ~ e x p ( - i q 2 L _ l ) =  1. By means of Eq. (2.10), this 
condition can be rewritten as l imc~ ~ (qaFL)= 0 (mod 2n). The values of 
q which obey this last equality are given by 

qa/2rc = j + kr; (j, k) integers (2.14) 

(see, e.g., ref. 15). The Fourier transform therefore contains delta peaks at 
a dense set of values of q, generated by the two incommensurate numbers 
1 and r, in units of 2rc/a. Note that the present method does not yield a 
closed expression for the amplitudes C of the delta peaks. Neither does it 
rule out, from a rigorous point of view, the presence of a continuous com- 
ponent in the Fourier spectrum. In the simple example of the Fibonacci 
chain, there are many other possible approaches to this question, like the 
projection method, which show that there is no continuous spectrum: the 
structure is strictly quasiperiodic. The present formalism will nevertheless 
be very useful in the following, in the study of cases where no other tool 
is at our disposal. 

3. PENROSE TILING WITH ROBINSON TRIANGLES 

3.1. Robinson Triangles 

In this section, we first recall the description of the Penrose tiling in 
terms of Robinson triangles. These are particularly convenient to describe 
inflation rules, as explained below. 

The Penrose tiling is usually described with two rhombs (or with darts 
and kites). If one cuts those polygons in a particular way, one obtains the 
two triangles P and Q of Fig. 1. These triangles have colored vertices, 
namely black and white ones. On Fig. 1 we only marked the black ones 
with a spot. Let us remark that there are actually two kinds of triangles P 
or Q, according to whether the marked vertices are to the right or to 
the left. More precisely, we denote by pR, pL, QR, QI~ the four different 
triangles (see Fig. 1). 

The tiling is subject to the following two matching rules. (16'17'18) 

1. Each edge of a triangle must be abutted by the edge of another 
triangle, in such a way that the colors of the vertices match. 

2. In the case of a monochromatic edge (i.e., an edge joining two 
vertices of the same color), the smaller angle of one triangle 
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D 

QL .~ L 
QO 

D 

QR ~ R 
QO 

A 

pLy. pL 

A 

B _~C 
pR= po R 

Fig. 1. Robinson triangles P0 and Q0. 

must abut the smaller angle of the other one. This is equivalent 
to saying that each monochromatic edge is oriented: the mono- 
chromatic edges of adjacent tiles must have the same orientation. 

The P and Q tiles can be composed to form new tiles (Fig. 2). Com- 
posing P and Q gives the triangle zQ', which may be obtained by dilating 
Q by the factor r and reversing its colors. The composition involves 
triangles of the same kind (R or L), and by convention the rQ' triangle 
obtained is also of the same kind 

pR + QR.._~,~Q,R; pL + QL....,cQ,L (3.1) 

This process of composition, or deflation, may be iterated (Fig. 3): 

.cQ,L + pR ~ .cp, R; zQ,R + pL ~ .CUE (3.2) 

"rP'R +'cQ'R ~ z2QR; "cP'L +'cQ'L ~'c2Q L (3.3) 

z2QL + 7;p,R ~ z2pR; 72QR + ~p,L ~ z2pL (3.4) 

Note that Eqs. (3.3) and (3.4) are equivalent to Eqs. (3.1) and (3.2) up to 
an exchange of primed and nonprimed objects. 

The above equations describe the composition of tiles, or deflation. 
The inflation process is the converse. It is equivalent to describing the 
process of inflation by starting with a larger triangle and cutting it. This 
point is illustrated by Fig. 2. 



Q u a s i p e r i o d i c i t y  and  R a n d o m n e s s  

Q,L ~ Q~ "C Q,R ~ Q1R 

Fig. 2. 

~;p'L . p1L ~p'R ~ p1R 

First step of composition (deflation) for Robinson triangles, leading to P~ and Q~. 
Here P0 and Q0 are drawn with a smaller scale than that used in Fig. 1. 

~.2QL -= QL .c2QR ~ QR 2 

~ZpL . e L 1:;2 pR . pR 

Fig. 3. Second step of composition of Robinson triangles leading to P2 and Q2. 
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In order to prepare the reader for the following sections, we need to 
introduce some notations which resemble those introduced in Section 2. 
Let us consider the tiles (elementary triangles) P and Q, which are the 
building blocks of the tiling, as the following "initial condition" 

PL--P  (3.5) 
QR = QR; QL = QL (3.6) 

After one inflation step, one gets 

zQ,R = QR = T(QR) 

With these notations, Eq. (3.1) may be reexpressed as 

QR R R. = PoQo,  Q~ L L = PoQo 

Similarly, Eqs. (3.2)-(3.4) may be rewritten as 

piR R L ~ , R D L w I L .  =PoQI = ~ o - o ~ o ,  
QR R R. = P 1 Q 1 ,  
p R  R L /~R , o L / ~ L .  

=PIQ2  = al-~ 1 ~.1, 

(3.7) 

(3.8) 

pR = T ( p R _ I ) =  Tn(pR); etc. (3.12) 

These objects obey the following recursion relations, which have the same 
meaning as Eqs. (3.8)-(3.11): 

R pR (]R 
Q n = n - -  l ~x~-. n - I "~ 

R R L R pL I " ) L  P ~ = P . - I Q n = P .  I . - l ~ n  a; 

Q ~ =  L L (3.13) P,,-1Qn-I  
L L L R R P n = P n - I Q R - I = P n - I P n  iOn-1 

(3.14) 

Let us now give some quantitative characteristics of these objects. The 
triangles Pn and Q, (either right or left) are z" times larger than the basic 
triangles P0, Qo. Their contents in tiles are described in a systematic way 
by the substitution matrix M4, defined as follows. Let vt, v2, v3, v4 denote 

Unlike Eq. (2.3), which determined the structure in an unambiguous 
way by concatenation of one-dimensional words, Eqs. (3.8)-(3.11)just  
express an object counting, and need to be completed by geometrical infor- 
mation, as explained below. 

Let us again notice that Eqs. (3.10) and (3.11) are equivalent to 
Eqs. (3.8) and (3.9) at the next inflation step. More generally, let us denote 

L by Pff, P ..... the transforms of pR, pL,.., under n inflation steps, 

p [  = L R D L D R / ~  R PoQ1 = (3.9) ~tO "tO ~ 0 

aL  L L =P1Q1 (3.10) 

P L-DLF~R-DLDROR (3.11) 
2 - - a  1 ~ 2  - -  a l a  1 ~51 
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the numbers of tiles of each type: pR, pr, QR, QL, in any finite piece A of 
the tiling. The numbers v'~, v;, v;, v; of tiles in the transformed object T(A) 
under one step of inflation are given by 

v ~ /  v 2 1 1 1 0 
v; / = M4 ] ; M4 = v 3 1 0 1 0 

Y 4 /  Y4 0 1 0 1 

(3.15) 

The eigenvalues of this matrix are r2, r-2, and e +i~/3. The last two numbers 
are sixth roots of unity, hence the entries of M~] have oscillatory contribu- 
tions, with period 6 in n. A straightforward calculation yields 

F2n+l-,gn+2 F2.+x + e.+2 F2. + e. F2n-- e~ 1 
1 IF2n+l-]-gn+2 F2n+l-Sn+ 2 F2n--8 n F2n-l-gn 

? v / ~ = ~  F2n-e .  Fz .+e .  F z . - 1 - e . + l  F2. l+~.+a 

\ F2.+e. F2,,-e,, Fzn_l+gn+ 1 Fzn 1--gn+l 

(3.16) 

where en depends on n modulo 6: ~6m=~6m+3=0;  ~6m+1=,~6m+2 ~-~- --1; 
~6m+4=~6m+5 ~ "q-l. The interpretation of Mg is the following: its first 
column gives the numbers of tiles of each type in pR, its second column in 
DL J n, etc. Hence P~ (either R or L) contains F2.+2 tiles (F2~+~ copies of Po, 
and F2~ copies of Qo), while Q~ contains F2~ + x tiles (F2~ copies of Po, and 
F2._ ~ copies of Qo)- The difference between numbers of pR and P~, or Qo R 
and Qo L, in any P~ or Q~, is bounded by one in absolute value. Figure 4 
shows the triangle P6 R, made of 377 tiles, namely 117Po R, 116 P~, 72 Qo R, 
and 72 Qo L. 

3.2. Geometr ica l  Descript ion of  Inf lat ion Rules 

Let us come back to Eq. (3.8), for instance. This equation expresses 
the numbers and types of objects generated by the inflation (composition) 
procedure, as explained above. We now describe the actual geometrical 
transformations (namely rotations and translations) needed to bring 
together the two initial triangles Po R and Qo R which build QR. By conven- 
tion, the initial condition is given by putting P~ and Qo R with their leftmost 
vertex at the origin, and with their symmetry axis parallel to the y axis. We 
also define the unit vectors (ek) (0 ~< k ~< 4) so that the angle between ek and 
the positive x axis is equal to k-2z/5 (Fig. 5). Let us denote the rotation 
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Fig. 4. Sixth iteration of the cutting procedure, yielding the triangle P(.  

Fig. 5. Unit vectors in the plane of the tiling. 
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of angle 0 = 7r/5 in the plane by R, and the translation of vector t by T(t), 
and use the condensed notation 

[R m, t]  (3.17) 

for the product of first the rotation R m of angle mrc/5 (0 ~< m ~< 9, since 
RI~  R ~  1), and then the translation T(t). 

With these notations, the complete geometrical version of the first part 
of Eq. (3.8) reads 

QR = [-R 7, _7703] pR + [R 6, __7703] QR (3.18) 

In an analogous way, the first equality in Eq. (3.13) becomes 

Q R jR7, __77nd3 ] R Pn 1 + [ R6, --l:ne3] R = Q , - 1  (3.19) 

To summarize, let us give all the geometrical recursion relations needed 
hereafter: 

Q ~ =  [ R7, -~"~3] pR (3.20) n -  1 + [ R6, --77ne3] Q~- 1 

Q~ = [ R  3, rn~o] p L  lrn+ L ,,- i + [ R4, leo] Q.-1 (3.2t ) 
pR = [ R  7, 77n- 1~1 ] p R 1 ~- [ R3, 77n~0] Q L (3.22) 

p~ = [R  3, znE,0] p L  77,,+ . - 1  + [ Rv, ~1] Q~. (3.23) 

The last two equations may be expanded in the following form: 

R Pn = [ RT, 77n 1~1 ] R L 77n+ P n _ l +  [R6,'~n(eo--e4)] en I + [ R  7, l e l ]  QnL_ l 

(3.24) 

L _  [R 3, Z"~o] L (3.25) P .  -- P,,-1 + [ R4, 77n~3 ] R -- Pn- l ' J - [  R3, -77~3] Q~-~ 

using the elementary rule for products of rotations and translations 

[R m, t ]o  [R m', t'] = [R m+m', t + R ' t ' ]  (3.26) 

3.3. Fourier Transform 

We now use the above inflation rules to derive recursive relations 
between Fourier amplitudes, along the lines of Section 2. Let us first define 
what we mean by the Fourier transform of the tiling. To a particular kind 
of elementary triangle, e.g., the initial triangle Po R, we associate a mass 
distribution described by a function p(x), where x denotes a point inside 
the triangle. For instance, p may be a uniform mass distribution inside the 
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triangle, or a delta function at the center of the triangle, or anything else. 
Thus, what we consider here is actually the dual of the tiling, since usually 
the atomic masses are located at the vertices. The Fourier transform of this 
function is defined as usual, 

ffEp(x)]  = G ( q ) =  f e x p ( - i q - x )  p(x) d2x (3.27) 

Under a rotation R, the distribution p(x) becomes p(Rx), and the Fourier 
amplitude changes into 

g [ p ( R x ) ]  = G(R ~q) (3.28) 

Similarly, under a translation T(t), the distribution p(x) becomes p(x + t), 
and the Fourier amplitude changes into 

f f [p (x  + t)] = e x p ( - i q -  t) G(q) (3.29) 

Using Eqs. (3.27)-(3.29), it is now possible to translate the geometrical 
recursion equations (3.20)-(3.25) into recursive equations for the 
associated Fourier amplitudes. One finds easily by the same type of 
arguments as in Section 2 

pR(q) = exp(--iq" "r" 1~1) P~ l(R3q) 
+ exp[ - i q "  Tn(e0--e4) "] p L  l(R4q) 
+ exp(--iq" "c"+ lg'1) Q~_I(R3q) (3.30) 

pL(q) = e x p ( -  iq. ,Onto) pL_ l(RTq) 

n * R R R 7 + exp(iq.'~ e3)[P,,_I(R6q)+Q,,_~( q)] (3.31) 

Qff(q) exp(iq, v n e  R 3 R = 3)[P, ,(R q)+Q,_,(R4q)] (3.32) 

QL(q) = exp(--iq" ~"~o) pL_ ~( RTq) 

+ exp(--iq" ~"+ 1~o) QL ~(R6q) (3.33) 

Here pR(q) stands for the Fourier amplitude associated with the object P~, 
etc. The initial conditions of the recursion (3.30)-(3.33) depend on the 
actual form of the density p(x) that we have put onto each type of elemen- 
tary triangle. 

We now discuss the implications of the recursion relations derived 
above, leaving the initial conditions pR(q), etc., unspecified. Therefore our 
results hold for any mass distribution living on the four types of elementary 
triangles. 
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Just as we did in Section 2, let us consider the wavevectors q corre- 
sponding to the largest possible growth of the Fourier amplitudes, which 
is proportional to the sample size (number of tiles). In analogy with the 
one-dimensional case, it can be argued that this largest growth, corre- 
sponding to a delta peak, occurs generically if and only if all the phases 
entering Eqs. (3.30)-(3.33) vanish in the n ~ oo limit. It can be checked 
that this condition is fulfilled for wavevectors of the form 

4 
q=4~z ~ mk0k (3.34) 

k=0 

where the mk are five integers, and the unit vectors Oh have been defined 
above. Indeed, since 2 cos(2rc/5)= z 1 and 2 cos(4~/5)= -z ,  we have 

q" 00 = 2~z[m o + z-~(rn 1 + m 4 )  - -  z(m2 + m3)] 

Hence q- ZnOo/2~ can be shown, by means of Eq. (2.6), to converge to zero 
(rood 1). For q given by Eq. (3.34), Eqs. (3.30)-(3.33) involve, in the n --* oe 
limit, a constant asymptotic 40 x 40 matrix rig40 with integer entries (there 
are four equations, which connect q to Rq ..... R 9 q ) .  This matrix can be 
easily diagonalized by means of the superpositions 

9 
p R =  Z ~~ (0~<l~<9) (3.35) 

k=0 

and three analogous quantities for the other types of tiles, where ~o= 
exp(i=/5). Indeed the asymptotic matrix ~'4o is decomposed into ten 4 • 4 
blocks ~/g4,; 

f ( / )  7l 6061 0 (,07 l N~ 

(d)41 (O31 (D31 / 

"/~4, l = l 0 O) 6l O0 

o o4, 

The eigenvalues of Jg4,; read 

2 = �89 + (#2 _ 4)i/2] 

(3.36) 

with l~=c + c'+_ [(c-c')Z+ 111/2; c=cos(3l~/5) and c'=cos(4lrr/5). Both 
• symbols in the above equations are independent, so that ;t assumes four 
values. If l =  0, the substitution matrix M 4 of Eq. (3.15) is recovered, with 
its leading eigenvalue r 2. The next largest eigenvalues are _ z, which occur 
for all odd values of l. The original Fourier amplitudes are given by 

9 
pR(Rkq)= ~ C~-k;P R.,; (0<k~<9)  (3.38) 

I=0 

(3.37) 
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The l =  0 term grows as r2n and yields a delta peak with a k-independent 
amplitude. Thus, the well-known tenfold symmetry of the Fourier spectrum 
is restored in the limit of a large system, even if the microscopic mass dis- 
tribution p(x) has no special symmetry property. With the same caveats as 
for the Fibonacci chain, the present approach has shown that the Penrose 
tiling made of Robinson triangles has a quasiperiodic Fourier transform, 
consisting of delta peaks at the wavevectors given by Eq. (3.34), with 
tenfold rotational symmetry. 

The usually defined Penrose lattice, with atoms at its vertices, has a 
denser Fourier spectrum, with delta peaks for 

4 

q=2rc ~ mk~ k (3.39) 
k = O  

The factor of 2 between both results is by no means a mistake, since put- 
ting atoms at vertices cannot be viewed as a limiting case of our model, 
which puts mass onto the basic triangles, because the coordination number 
is not a constant. Let us mention for sake of completeness that, for values 
of q given by Eq. (3.39) which are not of the form (3.34) (i.e., when the mk 
are not all of the same parity), the asymptotic form of Eqs. (3.30)-(3.33) 
involves signs ( _+ 1), which have period 3 in n. Hence the analogous of Jr 
is now the product of three consecutive such matrices. The largest eigen- 
value of this product is always equal to ~. = 4.188082. Hence, for all those 
values of q, the Fourier amplitudes only grow like N v, where N ~ v2n is the 
number of tiles in the sample, and ?=(ln2)/(61nv)---0.496054. The 
exponent 7 is smaller than 1, as expected: there are no delta peaks at those 
points. 

4. GENERALIZED INFLATION RULES: CHIRAL TILINGS 

One may wonder what happens if one completely relaxes the matching 
rules, composing the tiles P and Q in any order, just as in a random 
growth process. It is well known that only a vanishingly small fraction of 
such arrangements of tiles will lead to a tiling. Hence, we will restrict the 
possible arrangements by imposing inflation rules, allowing them to be 
more general than those described in Section 3 (which led to the Penrose 
tiling). 

As mentioned above, the matching rules are equivalent to cutting 
rules. Therefore, in order to relax the matching rules, one may choose to 
violate the cutting rules. For instance, one may cut a triangle pR as if it 
were a triangle pL. This may be done for a Q triangle as well. Let us notice 
that this alteration changes the numbers of right or left triangles of each 
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kind (P or Q), but of course not the total numbers of P or Q. Therefore 
the concentrations of P and Q triangles are the same as in the Penrose 
tiling. 

As mentioned in the introduction, several cases may be considered. Let 
us first study chiral tilings. 

The right chiral tiling is obtained by cutting repeatedly all Robinson 
triangles as right triangles. The superscript R is omitted from now on. Of 
course, the left chiral tiling is defined in an analogous way. Let P,  and Q,, 
denote the nth iterates of that inflation procedure, starting respectively 
from Po and Qo- The recursion relations which express the tile contents of 
the triangles, in analogy with Eqs. (3.13) and (3.14), read 

P,,=PZ-IQ,~-~; Q,,=P,,-1Qn-~ (4.1) 

The associated substitution matrix 

has eigenvalues ~2 and r 2, and its nth power is 

( F2n+' F2n ) (4.3) 
M~ = F2n F2n_ 1 

The numbers of tiles Po and Qo at each generation are therefore the same 
as for the Penrose tiling. Figure 6 shows the sixth iterate P6, to be com- 
pared with Fig. 4. The triangle P6 also contains 377 tiles, namely 233 Po 
and 144 Qo. There are several new local patterns and vertex environments, 
which are not present in the Penrose tiling. In particular, there exist ver- 
tices with coordination number z = 3. Moreover, the bond lengths assume 
three different values, in ratio 1 :r:~ 2, whereas only two different kinds of 
bonds (1 :r) are met in usual Penrose tilings. 

The Fourier amplitudes, still denoted Pn(q), Qn(q), can be evaluated 
along the lines of Section 3. There are now only two coupled equations, 

Pn(q)=exp(--iq'z ~ ~ ) P ~  l(R3q) 

+ exp[ - - iq ' z~ (eo -~4) ]  Pn l(R4q) 
+ exp( - iq- z~ + ~dl ) Q . -  l(R3q) (4.4) 

Q,(q) = exp(iq, r"~3)[Pn l(R3q) + Qn ~(Raq)] (4.5) 

Leaving the initial conditions unspecified, we can still argue that there is a 
delta peak at each value of q such that all phases entering Eqs. (4.4) and 

822/55/1-2-2 
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Fig. 6. A (right) chiral tiling after six steps of the cutting procedure. 

(4.5) go to zero. This condition is obeyed for the set of wavevectors given 
by Eq. (3.34). For  those values of q, Eqs. (4.4) and (4.5) involve a constant 
asymptotic 20 x 20 matrix Jd20, which can be decomposed into ten 2 x 2 
blocks it/2, t (0 ~< 14 9), 

(.0 6/~- 0) 7l (D7/~ 
~/12, l = ~ 0)7l (,06,j (4.6) 

by a change of variables analogous to Eq. (3.35). The eigenvalues of these 
blocks are 

=~(2o9 +co +e~ 2t (4.7) 

As expected, 1= 0 gives back the matrix M2 of Eq. (4.2). Its leading eigen- 
value z 2 is responsible for the existence of delta peaks at all the values of 
q given by Eq. (3.34), and for the restoration of the tenfold symmetry of the 
diffraction pattern. The next largest eigenvalues occur for l = 1 and 9; they 
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are complex conjugate, with modulus p -- 2.497212. Hence, beyond their 
leading behavior ( ~ N ~ z 2 " ) ,  the Fourier amplitudes Pn and Qn have 
oscillatory subleading contributions (~pn).  The relative weight of these 
terms is of the order of 

( p ' ] "  lnp  =0.049093 N-~,  with A = I -  21n~ (4.8) \ .r  ~ ) 

This small value of the correction exponent A implies a very slow and non- 
monotonous convergence of Fourier amplitudes. This is indeed one of the 
major differences between the chiral tilings under consideration and the 
Penrose tiling, where Fourier amplitudes have smooth N -1/2 corrections 
that can be interpreted as a boundary (perimeter) effect. 

5. GENERALIZED INFLATION RULES: R A N D O M  T IL INGS 

5.1. The Random Fibonacci Chain 

Just as we did in Section 2 for deterministic (nonrandom) structures, 
let us first illustrate our construction of random tilings, and study the 
nature of their Fourier transform, by considering a one-dimensional 
example, namely the random Fibonacci chain. 

We first generate a random Fibonacci sequence by a stochastic version 
~- ,of the substitution T defined in Section 2. Y- still acts on the two letters 
0 and 1, according to the following random rule 

3- 

0 ~ 1  

I0 (with prob p) 
1 --+ or 

01 (with prob r-- l - p )  

(5.1) 

where p is some fixed probability (0~< p ~< 1). This random rule holds 
independently at each time that Y- acts on a 1. We define an infinite 
sequence of random words 

~ = ~ - - L ( 0 )  (5.2) 

~o = 0 and ~ = 1 are certain, i.e., they take only one possible value. ~ is 
either 10 or 01, with respective probabilities p and r. ~ is either 101, 011, 
or 110, with respective probabilities p2+r2, pr, and pr, etc. ~KL is just a 
random reshuffling of the FL+ ~ letters, among which FL are 1 and FL_ x are 
0, of its deterministic counterpart WL, defined in Section 2. 
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The concatenation rule (2.3) has a stochastic analogue in the present 
case, 

~L 2~L 1 

(with prob p) 
o r  

(with prob r) 
(5.3) 

with the convention that the three sources of randomness in the rhs, 
namely both words and their concatenation procedure, have to be con- 
sidered as independent. The "/r converge (in distribution) to an infinite 
random word ~qr, the random Fibonacci sequence. 

We determine now the structural entropy of this object. Let NL denote 
the number of different realizations of ~/r We have seen before that No = 
Ni = l, N 2 = 2, N 3 = 3. It follows from Eq. (5.3) that the concatenation of 
any realization of ~WL 1 with any realization of ~WL 2 yields two realiza- 
tions of "We. The 2NL_ ~NL 2 realizations of "/r thus obtained are not all 
different. Indeed, those of the form ~ =  ~/UL_2~_3~Kk_2 are generated 
twice. This simple observation yields the recursion relation 

Nc=NL 2(2NL 1--NL 2NL 3) (5.4) 

This equation is solved by defining the ratios RL = NL/(NL_ 1NL_ 2), which 
obey RL=2-1/RL_I.  The initial value R 2 = 2  readily yields RL=  
L/ (L-  1). The structural entropy of ~/r defined through 

SL = In NL (5.5) 

then obeys the recursion formula 

SL=SL I + S L _ 2 + l n  RL (5.6) 

The solution of this last equation which assumes the initial values So = 
S1 = 0 reads 

L 
SL = ~ FL+I MlnRM (5.7) 

M=2 

The entropy per letter Svib = limL~ co SL/FL+ ~ of the random Fibonacci 
sequence is therefore given by 

SFib = 2 r - -M In RM 
M~>2 

= ~ z -<~+2) ln M 
M>~2 

= 0.444399 (5.8) 
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We now build a random Fibonacci chain by putting atoms on a line, 
the bond lengths being in one-to-one correspondence with the letters of ~ ,  
according to the rule of Section 2. We define the Fourier amplitudes f~L(q) 
associated with the words ~ by a formula analogous to Eq. (2.11). Hence 
NL(q) are random functions of q, for which we will derive statistical 
statements. Let us first notice that Eqs. (2.8)-(2.10) still hold for the 
random chain. From Eq. (5.3) there follows the random recursion relation 

f#L- l(q) + d--iq)'L-l~L-- 2(q) (with prob p) 
(qL(q) = or (5.9) 

~L_2(q)+e--iq~L-2~L_l(q) (with prob r) 

with the certain initial conditions g0(q)= e-~q and cgl(q)= e -iq~+r It will 
turn out that it is sufficient for our purpose to consider the first two 
cumulants of the random Fourier amplitudes, namely 

At(q) = (fqL(q) ) 
(5.10) 

BL(q) = ( I~L(q)l 2 ) -IAL(q)I 2 

where the brackets imply averaging over all sources of randomness present 
in ~ .  

The following recursion relation for the averaged Fourier amplitudes 
AL(q) is easily derived form Eq. (5.9): 

AL(q) = (p + re -iq&-2) AL_ l(q) + (r + pe-iq;'L-~) AL 2(q) 
(5.11) 

Ao(q)=e iq; Al(q)=e-,q(l+r 

We have shown in Section 2 that the deterministic Fibonacci chain has 
delta peaks in its Fourier transform at a dense set of values of q, given by 
Eq. (2.14). The reason was that, for those values of the wavevector, the 
phases exp(--iq2L_~) entering Eq. (2.12) go to unity, thus producing the 
largest possible growth of Fourier amplitudes. The very same mechanism 
holds for Eq. (5.11). Hence the averaged Fourier spectrum of the random 
Fibonacci chain has delta peaks at the same wavevectors as the deter- 
ministic chain. 

Let us now turn to the second cumulants BL(q) of the Fourier 
amplitudes. It can be derived from Eq. (5.9) that these quantities obey the 
recursion 

Br(q) = BL_ l(q) + BL- 2(q) + 2pr A L(q) 
with 

AL(q) = (1 -- cos q2L_ ~) [AL_ 2(q)l 2 + (1 -- cos q2L-2) [AL_ ~(q)l 2 

-- R e { ( 1 - e  ~q;~L ' ) (1-e-gq;~-2)A*~(q)Ac_2(q)}  (5.12) 
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and with the initial conditions Bo(q)=B~(q)=O. The AL(q) are smooth 
functions of q, and remain bounded as L goes to infinity, because the 
divergences of the averaged amplitudes AL(q) at values of q of the form 
(2.14) are exactly compensated by the vanishing of their prefactors in 
Eq. (5.12). Since the solution of this recursion reads 

L 

BL(q)=2pr ~ FL+~_MAM(q) (5.13) 
M=2 

the remarks made just above show that the quantity 

5e(q)= lim BL(q)=2pr ~ r-MAM(q) (5.14) 
L~cc) EL+ 1 M>~2 

is a smooth, bounded function of q. The interpretation of our results is as 
follows. 

(a) For a resonant wavevector of the form (2.14), qa/27z = j + k~, both 
AL(q) and BL(q) grow like FL+ 1. Hence, the quantity fgL(q)/FL+ ~, having 
a finite average and a second cumulant of the order of 1/FL+I, is self- 
averaging in the limit of an infinite chain. Its certain complex limit value 

lira f~L(q) AL(q) = lira = Cjk (5.15) 
L ~  EL+ 1 L~o3 EL+ 1 

is just the amplitude of the delta peak. Cj~ has a smooth p dependence, 
being maximal in magnitude in the deterministic cases (p = 0 or 1). 

(b) For a generic wavevector, namely a value of q which is neither of 
the form (2.14) nor too well approximated by those numbers, then 
]AL(q)[ 2 ,~FL+I, in such a way that the quantity 

lim (l~L(q)12) lim BL(q)=se(q) (5.16) 
L~o~ E L +  1 L ~  E L +  1 

is identified by a standard argument with the density of the absolutely con- 
tinuous part 5e(q) dq of the Fourier spectrum. This continuous component 
is entirely defined by Eq. (5.16), since the nongeneric values of q that we 
have excluded have clearly zero measure. We do not aim at being more 
rigorous on this point. 

The random Fibonacci chain thus provides a tractable example of a 
random geometrical structure with a mixed Fourier spectrum. 
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5.2. The  R a n d o m  Penrose Ti l ing 

We have shown in Section 4 how the matching rules could be relaxed 
in a deterministic fashion to produce a (right or left) chiral pattern which 
automatically yields a tiling of the plane and which even strictly respects 
the quasiperiodicity of the Penrose tiling. 

Let us now define, in close analogy with the random Fibonacci 
sequence, the (locally) random Penrose tiling as follows. Starting first with 
a Q triangle, we cut it either to the right or to the left with equal 
probabilities (in the usual statistical sense that, among a large number of 
initial triangles, we cut half of them along each direction). This first cut 
produces a random object, denoted (~1, which has two equiprobable 
realizations. Starting now with a P triangle, we also cut it either to the 
right or to the left with equal probabilities, thus producing an elementary 
P triangle and a larger Q triangle that we identify with (~1. The whole 
object, denoted t31, has four possible realizations, since its definition has 
involved two binary choices. The process can be iterated, according to 

On=/3n_lOn_l (5.17) 

/3.=- 0_.,/3._ ~ (5.18) 

with the convention that the initial data P0, Qo are just elementary P and 
Q tiles. At the nth step of the random inflation, P,  and Qn are made of the 
very same numbers of tiles as their deterministic counterparts considered 
above: their tiles are just reshuffled. 

Let us now determine the structural entropy of the infinite random 
Penrose tiling, in analogy with the one-dimensional case. Let Mn and Nn 
denote the numbers of different realizations of 0n and P, ,  respectively: 
M o = N o =  1, M~ =2, N L =4. The random recursive procedure (5.17)-(5.18) 
generates twice the same realization of Qn or/3n in some cases, described 
in a generic way on Fig. 7. Consider first the Qn triangle of Fig. 7a: 
this pattern is obtained either as 0 n = ( Q n  I/3n 2)Q'n--1 or as On= 
(O'n--1/3n--2) On--1" This effect leads to the following equation: 

M~=2M~ INn_I-M2_IN~ 2 (5.19) 

The /3,, triangle of Fig. 7b is also generated twice, namely either as /3n = 
(Pn-l(/3n 20n--2))(0n 1/3'n--2) or as /3n---=(/3n_l(/3tn 20n--2))(On--l/3n--2). 
Hence we have 

N.=2MnNn-I-M.-1M. 2Nn-I N2n-2 (5.20) 

We then define the entropies 

$2,+ 1 = In M~; $2~+2 = l n  Nn (5.21) 
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( a )  

Fig. 7. 

(b) 

Patterns that are generated twice in the cutting procedure (a) for ~n, (b) for P,. 

These quant i t ies  obey the recurs ion equa t ion  

S L = S L _ I + S L  2 + l n R  L (5.22) 

which is ident ical  to Eq. (5.6), with S~ = $2 = 0 ,  and  with the fol lowing 
defini t ion of  the ra t ios  RL: 

m n  Nn 
J2n+l=Xn ~- ; R2n + 2 --- y ~ - - -  (5.23) 

M,, IN,, 1 M, ,N, , - I  

These quant i t ies  are de te rmined  by the recurs ion re la t ions  

1 1 
xn = 2 - - - - ;  y~ = 2 (5.24) 

Y n -  1 X n X n -  l f i n -  1 

and  the ini t ial  values xl  = Yl = 2. The  recursions (5.24) is not  soluble in a 
closed form. The  en t ropy  per  tile of the r a n d o m  Penrose  t i l ing 

Spcn= lim In M n _  lira In N ,  l im SL (5.25) 
,~o~ F2n+l . . . .  F2,+2 L~ o~ FL 
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has the following expression, to be evaluated numerically: 

Sp~n = ~ z l M In RM=0.606094 (5.26) 
M~>3 

This value is larger than the entropy Svib of the random Fibonacci chain, 
and only slightly smaller than the entropy 

S m i x = - ( r - 1 1 n r  l + z - 2 1 n r  2)=0.665018 

of a random mixture of two types of objects with concentrations r - l  
and z - 2. 

Figure 8 shows one among the N6 = e s~4 ~ 1.2 x 1 0  99 different realiza- 
tions of P6~ to be compared with the deterministic Penrose tiling P~ of 
Fig. 4 and the right chiral tiling P6 of Fig. 6. These three patterns are made 
of the same numbers of tiles of each type. 

Fig. 8. A random Penrose tiling after six steps of the cutting procedure. 
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The study of the Fourier spectrum of the random Penrose tiling is 
fully analogous to that of the random Fibonacci chain, explained in detail 
in Section 5.1. The above definitions imply that the Fourier amplitudes 
P~(q), (~.(q) are random variables, which obey 

( exp(iq" zn~3)[ P n - l ( R 3 q ) +  ~ ) n - l ( R 4 q ) ]  

or  (5.27) 
Qn(q) = { e x p ( - i q .  z"~o) Pn l(R7q) + e x p ( - i q ,  z "+ 1~o) Q, ~(R6q) 

fexp(  - iq .  z n-  ~el ) P,~- t(R3q) + exp( - iq . Zn~o) Q,,(RTq) 
P,(q)  or (5.28) 

(exp(  - iq- COo) fin- l(R7q) + exp( - iq" C + ~0~ ) Q ,_  l(R3q) 

The initial values Po(q), Qo(q) are certain (nonrandom) quantities, equal to 
the Fourier transforms of the given mass distributions of both types of tiles. 
Both alternatives of the rhs of Eqs. (5.27) and (5.28) are taken with equal 
probabilities, and this source of randomness is independent of those 
already present in the amplitudes that are added. Since Eqs. (5.27) and 
(5.28) have the very same structure as Eq. (5.9), the way to solve them 
follows the same lines, although the notation is much lengthier. The 
averaged Fourier amplitudes 

P,(q) = (P , (q ) ) ;  O,(q) = ( 0 , ( q ) )  (5.29) 

obey two coupled linear recursion relations that are very easily derived 
from Eqs. (5.27) and (5.28). These equations are analogous to Eq. (5.11): 
they imply that the averaged amplitudes have delta peaks for the same 
wavevectors of the form (3.34) as the deterministic Penrose tiling. The 
study of the second cumulants of the random amplitudes is more intricate. 
In order to obtain a closed set of equations analogous to Eq. (5.12), one 
has to consider four times ten sequences of cumulants u~J) namely ~ ' n , k ~  

B(1)t,,~ _ ,,k~,~J- (P,(q)  P*(Rkq) )c  

B(2) r,,'~ _ .,1,~'lJ- (P,,(q) O*(Rkq))~ 
(5.30) 

B(3) t~'t _ ,,d.~..Ij-- (~).(q) O*(Rkq) )c 

B<4)I"~- ( P , - t ( q )  O*(Rkq) )c 
n, k Utll ) - -  

for 0 ~< k ~< 9; the subscript ( - ) c  means that the product of averages has to 
be subtracted from the averaged product. It can be shown that the u~J) l.~ n , k  

obey inhomogeneous recursion relations analogous to Eq. (5.12). This set 
of equations connects different values of j and k; their source terms, which 
generalize the ztL(q) of Eq. (5.12)7 are quadratic in the averaged amplitudes 
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(5.29). The smoothness of these source terms ensures the existence of an 
absolutely continuous part in the Fourier spectrum, with a density 

B(1)~',, ~ B(3)r 
St(q)= lim .,otn~_ lim n,o~nJ (5.31) 

n ~ m  F2n+2 n~oo F2n+l  

which is tenfold rotationally symmetric, i.e., S t (q)= St(Req) for 0 ~< k ~< 9. 
Thus the random Penrose lattice, just like the random Fibonacci 

chain, has a mixed Fourier spectrum. There is enough randomness to yield 
both an extensive entropy and an absolutely continuous part in the Fourier 
spectrum, but there remains a partial perfect long-range translational 
order, attested by the presence of delta peaks. 

6. FURTHER GENERALIZATIONS A N D  D ISCUSSION 

We have shown how generalized inflation rules can produce new 
filings of the plane, made of Robinson triangles, which violate Penrose's 
celebrated matching rules. Although these tilings have infinitely many new 
kinds of patterns with respect to Penrose tilings, the most obvious one 
being three bond lengths, they have (at least partially) a quasiperiodic 
diffraction spectrum. 

The chiral tilings introduced in Section 4 have a strictly quasiperiodic 
tenfold symmetric Fourier spectrum. A much larger class of deterministic 
tilings sharing that property can be built using the same idea. Indeed, any 
set of generalized inflation rules which is uniform in space at a given 
generation and either is independent of the generation label n or depends 
on n in a periodic way can be studied along the lines of Section 4. Two 
simple examples of such rules are as follows: (a) Cut all P triangles to the 
right and all Q triangles to the left. (b)Cut  all triangles to the right if n is 
even, to the left if n is odd. 

The (locally) random tilings of Section 5 have both an extensive struc- 
tural entropy and a mixed Fourier spectrum, made of two parts, namely 
the same dense set of delta peaks as the Penrose tiling, with smaller inten- 
sities, and a smooth (absolutely continuous) component. Hence, apart from 
their obvious perfect rotational order (the tiles only have ten discrete 
possible orientations), the random filings have a partial but perfect 
long-range translational order. The class of filings with a mixed spectrum 
that can be described by our approach is also quite large. It includes in 
particular the globally random filings, defined as follows. The cutting rules 
are chosen at random at each generation (e.g., one binary choice to cut the 
P's to the right or to the left, and another binary choice for the Q's, or the 
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same choice for both types of tiles), but hold identically for all triangles at 
a given generation. The entropy of such a construction is therefore propor- 
tional to the generation label n; it grows only like the logarithm of the 
number of tiles. The Fourier spectrum of globally random tilings can also 
be studied by the approach developed in Section 5. The only difference is 
that the amplitudes of parts of the tiling which are added up in random 
recursion relations, such as (5.9) and (5.27) and (5.28), are now correlated 
variables. Hence, the number of cumulants needed to get a closed set of 
equations is higher than in Section 5, but still finite, and the qualitative 
results remain the same: both locally and globally random tilings have a 
mixed Fourier spectrum. 

The above study of tilings generated by locally random inflation rules 
may be relevant to generic random tilings, obtained by putting together P 
and Q tiles without obeying the matching rules. As mentioned in Section 4, 
the requirement of tiling a part of the plane without overlaps or holes is a 
strong nonlocal constraint on such tile arrangements, thus making the 
tiling problem very difficult. The structural entropy Stil of this model is 
certainly slightly larger than the entropy SeEn = 0.606 of the subclass of 
random tilings that we have described. Besides the actual value of Stil, a 
question of more physical relevance remains open, namely the nature of 
the Fourier spectrum of these generic random tilings. There is a simple 
example of a random tiling with a mixed Fourier transform, namely 
stringing two types of segments, with commensurable lengths such as l and 
2l, at random on a line. 

In closer connection with some previous work quoted in the introduc- 
tion, we can also characterize the tilings produced by generalized inflation 
rules by looking at their extension in "perpendicular space." This notion 
shows up in a natural way when generating quasiperiodic tilings by  the 
projection method. Let A and B be any two points of one of our tilings, 
either deterministic or random, after n steps of the inflation procedure. The 
vector AB can be shown, by induction on n, to be a linear combination, 
with integer coefficients, of the five unit vectors Ok: 

4 

A B =  ~ UkOk (6.1) 
k = 0  

The components Nk are unique, up to the addition of an integer to all of 
them, since Z4=0 0h = 0. Hence AB can be viewed as the projection onto 
the tiling plane (E) of the five-dimensional vector 

4 

AB(5)= ~ Nk0(k 5) (6.2) 
k = 0  
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where ~(5) form an orthonormal basis in Euclidean five-dimensional space 
Ns. The ambiguity on the Nk is such that AB (5) is only defined by Eq. (6.2) 
up to a translation by the diagonal vector A (s) ~-,4 "3(5) The sum of the 

~ A _ , k = O  C k �9 

tiling plane (E) and of the space generated by A r has an orthogonal plane 
(two-dimensional subspace) ( E l ) ,  hence called perpendicular space. The 

~• Coordinate axes can be ~5) project in that space onto five unit vectors e~. 
chosen such that e~• makes the angle k-4rc/5 with the x axis: in rough 
words, the unit vectors rotate twice faster in (E• than they do in (E), the 
plane of the tiling. The projection of AB r onto (E • ) reads 

4 
AB •  ~ Nk~k ~ (6.3) 

k--0 

This expression is free of the above ambiguity, since /.k=0~4 ~• = 0, as it 
should, since A ~5) and (E • are orthogonal. To summarize, to any vector 
(6.1) joining two tiling vertices, we can associate a unique vector (6.3) in 
perpendicular space. Thus we can build an image of our tilings in (E• up 
to an irrelevant global translation and rotation. Let (A, B, C) and (D, E, F) 
denote the corners of the triangles Pn and Qn, as in Fig. 1, at the nth 
generation. For these particular points, Eq. (6.1) reads 

A B =  - F n +  1~ 1 - Fn(~0 + ~2) 

AC = F.+ 1~4 + F.(~o + e3) 
(6.4) 

DE = F n g '  3 -t- F.  _ 1(c2 -t- e4) 

DF = - F . d 2  - Fn_ l(el "~- e3) 

It is then easy, using the definitions of ik and ek"2- and the identities (2.6), 
to compute the following vector norms (distances): 

A B  = A C  = E F =  zn; B C  = D E  = D F =  z"-  1 (6.5) 

A B • 1 7 7 1 7 7  B C • 1 7 7 1 7 7  1) (6.6) 

While Eq. (6.5) just expresses that P,  and Q,, are z~ times larger than the 
elementary tiles Po and Qo, Eq. (6.6) show that all these distances shrink 
to zero in perpendicular space. Since, at each generation n, any new vertex 
can be joined to one of the tiling corners by a sum of at most three vectors 
of the form (6.4), we conclude readily that the tilings produced by our 
generalized inflation rules, either deterministic or random, have an exten- 
sion (diameter) in perpendicular space which stays finite in the limit of an 
infinite sample. 

To conclude, let us summarize the main points of this article. We have 
studied here the interplay between two properties of tilings (made of 
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Robinson triangles): their inflation (substitution) properties and their 
Fourier spectra. This study shows that quasiperiodicity is robust (in an 
intuitive sense) to changes in the rules for tiling the plane. It shows also 
that the constraint of the existence of inflation rules is strong: in particular, 
the "width" in perpendicular space of the strip which would generate the 
tiling is finite. We should also mention that one of our motivations in this 
work was to try to find a two-dimensional analogue of the structure we 
studied in one dimension, (14'151 which gave rise to a singular continuous 
Fourier spectrum. Instead of giving such a spectrum, the structures studied 
here have in general a mixed spectrum, i.e., they contain an absolutely 
continuous part as well as a discrete one. 
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